0 JBC
↳1 JBC2FIG (⇒)
↳2 JBCTerminationGraph
↳3 FIGtoITRSProof (⇒)
↳4 IDP
↳5 IDPNonInfProof (⇒)
↳6 AND
↳7 IDP
↳8 IDPNonInfProof (⇒)
↳9 IDP
↳10 IDependencyGraphProof (⇔)
↳11 TRUE
↳12 IDP
↳13 IDependencyGraphProof (⇔)
↳14 TRUE
/**
* Example taken from "A Term Rewriting Approach to the Automated Termination
* Analysis of Imperative Programs" (http://www.cs.unm.edu/~spf/papers/2009-02.pdf)
* and converted to Java.
*/
public class PastaB16 {
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
while (x > 0) {
while (y > 0) {
y--;
}
x--;
}
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
Generated 14 rules for P and 2 rules for R.
Combined rules. Obtained 2 rules for P and 0 rules for R.
Filtered ground terms:
639_0_main_LE(x1, x2, x3, x4) → 639_0_main_LE(x2, x3, x4)
Cond_639_0_main_LE1(x1, x2, x3, x4, x5) → Cond_639_0_main_LE1(x1, x3, x4, x5)
Cond_639_0_main_LE(x1, x2, x3, x4, x5) → Cond_639_0_main_LE(x1, x3)
Filtered duplicate args:
639_0_main_LE(x1, x2, x3) → 639_0_main_LE(x1, x3)
Cond_639_0_main_LE1(x1, x2, x3, x4) → Cond_639_0_main_LE1(x1, x2, x4)
Combined rules. Obtained 2 rules for P and 0 rules for R.
Finished conversion. Obtained 2 rules for P and 0 rules for R. System has predefined symbols.
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((x0[0] > 0 && 0 < x0[0] + -1 →* TRUE)∧(x0[0] →* x0[1]))
(1) -> (0), if (x0[1] + -1 →* x0[0])
(1) -> (2), if ((x0[1] + -1 →* x0[2])∧(0 →* x1[2]))
(2) -> (3), if ((x1[2] > 0 →* TRUE)∧(x0[2] →* x0[3])∧(x1[2] →* x1[3]))
(3) -> (0), if ((x0[3] →* x0[0])∧(x1[3] + -1 →* 0))
(3) -> (2), if ((x0[3] →* x0[2])∧(x1[3] + -1 →* x1[2]))
(1) (&&(>(x0[0], 0), <(0, +(x0[0], -1)))=TRUE∧x0[0]=x0[1] ⇒ 639_0_MAIN_LE(x0[0], 0)≥NonInfC∧639_0_MAIN_LE(x0[0], 0)≥COND_639_0_MAIN_LE(&&(>(x0[0], 0), <(0, +(x0[0], -1))), x0[0], 0)∧(UIncreasing(COND_639_0_MAIN_LE(&&(>(x0[0], 0), <(0, +(x0[0], -1))), x0[0], 0)), ≥))
(2) (>(x0[0], 0)=TRUE∧<(0, +(x0[0], -1))=TRUE ⇒ 639_0_MAIN_LE(x0[0], 0)≥NonInfC∧639_0_MAIN_LE(x0[0], 0)≥COND_639_0_MAIN_LE(&&(>(x0[0], 0), <(0, +(x0[0], -1))), x0[0], 0)∧(UIncreasing(COND_639_0_MAIN_LE(&&(>(x0[0], 0), <(0, +(x0[0], -1))), x0[0], 0)), ≥))
(3) (x0[0] + [-1] ≥ 0∧x0[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_639_0_MAIN_LE(&&(>(x0[0], 0), <(0, +(x0[0], -1))), x0[0], 0)), ≥)∧[(-1)Bound*bni_12] ≥ 0∧[(-1)bso_13] ≥ 0)
(4) (x0[0] + [-1] ≥ 0∧x0[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_639_0_MAIN_LE(&&(>(x0[0], 0), <(0, +(x0[0], -1))), x0[0], 0)), ≥)∧[(-1)Bound*bni_12] ≥ 0∧[(-1)bso_13] ≥ 0)
(5) (x0[0] + [-1] ≥ 0∧x0[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_639_0_MAIN_LE(&&(>(x0[0], 0), <(0, +(x0[0], -1))), x0[0], 0)), ≥)∧[(-1)Bound*bni_12] ≥ 0∧[(-1)bso_13] ≥ 0)
(6) (x0[0] ≥ 0∧[-1] + x0[0] ≥ 0 ⇒ (UIncreasing(COND_639_0_MAIN_LE(&&(>(x0[0], 0), <(0, +(x0[0], -1))), x0[0], 0)), ≥)∧[(-1)Bound*bni_12] ≥ 0∧[(-1)bso_13] ≥ 0)
(7) ([1] + x0[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_639_0_MAIN_LE(&&(>(x0[0], 0), <(0, +(x0[0], -1))), x0[0], 0)), ≥)∧[(-1)Bound*bni_12] ≥ 0∧[(-1)bso_13] ≥ 0)
(8) (COND_639_0_MAIN_LE(TRUE, x0[1], 0)≥NonInfC∧COND_639_0_MAIN_LE(TRUE, x0[1], 0)≥639_0_MAIN_LE(+(x0[1], -1), 0)∧(UIncreasing(639_0_MAIN_LE(+(x0[1], -1), 0)), ≥))
(9) ((UIncreasing(639_0_MAIN_LE(+(x0[1], -1), 0)), ≥)∧[(-1)bso_15] ≥ 0)
(10) ((UIncreasing(639_0_MAIN_LE(+(x0[1], -1), 0)), ≥)∧[(-1)bso_15] ≥ 0)
(11) ((UIncreasing(639_0_MAIN_LE(+(x0[1], -1), 0)), ≥)∧[(-1)bso_15] ≥ 0)
(12) ((UIncreasing(639_0_MAIN_LE(+(x0[1], -1), 0)), ≥)∧0 = 0∧[(-1)bso_15] ≥ 0)
(13) (>(x1[2], 0)=TRUE∧x0[2]=x0[3]∧x1[2]=x1[3] ⇒ 639_0_MAIN_LE(x0[2], x1[2])≥NonInfC∧639_0_MAIN_LE(x0[2], x1[2])≥COND_639_0_MAIN_LE1(>(x1[2], 0), x0[2], x1[2])∧(UIncreasing(COND_639_0_MAIN_LE1(>(x1[2], 0), x0[2], x1[2])), ≥))
(14) (>(x1[2], 0)=TRUE ⇒ 639_0_MAIN_LE(x0[2], x1[2])≥NonInfC∧639_0_MAIN_LE(x0[2], x1[2])≥COND_639_0_MAIN_LE1(>(x1[2], 0), x0[2], x1[2])∧(UIncreasing(COND_639_0_MAIN_LE1(>(x1[2], 0), x0[2], x1[2])), ≥))
(15) (x1[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_639_0_MAIN_LE1(>(x1[2], 0), x0[2], x1[2])), ≥)∧[(-1)Bound*bni_16] + [(2)bni_16]x1[2] ≥ 0∧[1 + (-1)bso_17] ≥ 0)
(16) (x1[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_639_0_MAIN_LE1(>(x1[2], 0), x0[2], x1[2])), ≥)∧[(-1)Bound*bni_16] + [(2)bni_16]x1[2] ≥ 0∧[1 + (-1)bso_17] ≥ 0)
(17) (x1[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_639_0_MAIN_LE1(>(x1[2], 0), x0[2], x1[2])), ≥)∧[(-1)Bound*bni_16] + [(2)bni_16]x1[2] ≥ 0∧[1 + (-1)bso_17] ≥ 0)
(18) (x1[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_639_0_MAIN_LE1(>(x1[2], 0), x0[2], x1[2])), ≥)∧0 = 0∧[(-1)Bound*bni_16] + [(2)bni_16]x1[2] ≥ 0∧0 = 0∧[1 + (-1)bso_17] ≥ 0)
(19) (x1[2] ≥ 0 ⇒ (UIncreasing(COND_639_0_MAIN_LE1(>(x1[2], 0), x0[2], x1[2])), ≥)∧0 = 0∧[(-1)Bound*bni_16 + (2)bni_16] + [(2)bni_16]x1[2] ≥ 0∧0 = 0∧[1 + (-1)bso_17] ≥ 0)
(20) (COND_639_0_MAIN_LE1(TRUE, x0[3], x1[3])≥NonInfC∧COND_639_0_MAIN_LE1(TRUE, x0[3], x1[3])≥639_0_MAIN_LE(x0[3], +(x1[3], -1))∧(UIncreasing(639_0_MAIN_LE(x0[3], +(x1[3], -1))), ≥))
(21) ((UIncreasing(639_0_MAIN_LE(x0[3], +(x1[3], -1))), ≥)∧[1 + (-1)bso_19] ≥ 0)
(22) ((UIncreasing(639_0_MAIN_LE(x0[3], +(x1[3], -1))), ≥)∧[1 + (-1)bso_19] ≥ 0)
(23) ((UIncreasing(639_0_MAIN_LE(x0[3], +(x1[3], -1))), ≥)∧[1 + (-1)bso_19] ≥ 0)
(24) ((UIncreasing(639_0_MAIN_LE(x0[3], +(x1[3], -1))), ≥)∧0 = 0∧0 = 0∧[1 + (-1)bso_19] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(639_0_MAIN_LE(x1, x2)) = [2]x2
POL(0) = 0
POL(COND_639_0_MAIN_LE(x1, x2, x3)) = 0
POL(&&(x1, x2)) = [-1]
POL(>(x1, x2)) = [-1]
POL(<(x1, x2)) = [-1]
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
POL(COND_639_0_MAIN_LE1(x1, x2, x3)) = [-1] + [2]x3
639_0_MAIN_LE(x0[2], x1[2]) → COND_639_0_MAIN_LE1(>(x1[2], 0), x0[2], x1[2])
COND_639_0_MAIN_LE1(TRUE, x0[3], x1[3]) → 639_0_MAIN_LE(x0[3], +(x1[3], -1))
639_0_MAIN_LE(x0[0], 0) → COND_639_0_MAIN_LE(&&(>(x0[0], 0), <(0, +(x0[0], -1))), x0[0], 0)
639_0_MAIN_LE(x0[2], x1[2]) → COND_639_0_MAIN_LE1(>(x1[2], 0), x0[2], x1[2])
639_0_MAIN_LE(x0[0], 0) → COND_639_0_MAIN_LE(&&(>(x0[0], 0), <(0, +(x0[0], -1))), x0[0], 0)
COND_639_0_MAIN_LE(TRUE, x0[1], 0) → 639_0_MAIN_LE(+(x0[1], -1), 0)
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(1) -> (0), if (x0[1] + -1 →* x0[0])
(0) -> (1), if ((x0[0] > 0 && 0 < x0[0] + -1 →* TRUE)∧(x0[0] →* x0[1]))
(1) (&&(>(x0[0], 0), <(0, +(x0[0], -1)))=TRUE∧x0[0]=x0[1] ⇒ 639_0_MAIN_LE(x0[0], 0)≥NonInfC∧639_0_MAIN_LE(x0[0], 0)≥COND_639_0_MAIN_LE(&&(>(x0[0], 0), <(0, +(x0[0], -1))), x0[0], 0)∧(UIncreasing(COND_639_0_MAIN_LE(&&(>(x0[0], 0), <(0, +(x0[0], -1))), x0[0], 0)), ≥))
(2) (>(x0[0], 0)=TRUE∧<(0, +(x0[0], -1))=TRUE ⇒ 639_0_MAIN_LE(x0[0], 0)≥NonInfC∧639_0_MAIN_LE(x0[0], 0)≥COND_639_0_MAIN_LE(&&(>(x0[0], 0), <(0, +(x0[0], -1))), x0[0], 0)∧(UIncreasing(COND_639_0_MAIN_LE(&&(>(x0[0], 0), <(0, +(x0[0], -1))), x0[0], 0)), ≥))
(3) (x0[0] + [-1] ≥ 0∧x0[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_639_0_MAIN_LE(&&(>(x0[0], 0), <(0, +(x0[0], -1))), x0[0], 0)), ≥)∧[(-1)Bound*bni_8] + [(2)bni_8]x0[0] ≥ 0∧[1 + (-1)bso_9] ≥ 0)
(4) (x0[0] + [-1] ≥ 0∧x0[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_639_0_MAIN_LE(&&(>(x0[0], 0), <(0, +(x0[0], -1))), x0[0], 0)), ≥)∧[(-1)Bound*bni_8] + [(2)bni_8]x0[0] ≥ 0∧[1 + (-1)bso_9] ≥ 0)
(5) (x0[0] + [-1] ≥ 0∧x0[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_639_0_MAIN_LE(&&(>(x0[0], 0), <(0, +(x0[0], -1))), x0[0], 0)), ≥)∧[(-1)Bound*bni_8] + [(2)bni_8]x0[0] ≥ 0∧[1 + (-1)bso_9] ≥ 0)
(6) (x0[0] ≥ 0∧[-1] + x0[0] ≥ 0 ⇒ (UIncreasing(COND_639_0_MAIN_LE(&&(>(x0[0], 0), <(0, +(x0[0], -1))), x0[0], 0)), ≥)∧[(-1)Bound*bni_8 + (2)bni_8] + [(2)bni_8]x0[0] ≥ 0∧[1 + (-1)bso_9] ≥ 0)
(7) ([1] + x0[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_639_0_MAIN_LE(&&(>(x0[0], 0), <(0, +(x0[0], -1))), x0[0], 0)), ≥)∧[(-1)Bound*bni_8 + (4)bni_8] + [(2)bni_8]x0[0] ≥ 0∧[1 + (-1)bso_9] ≥ 0)
(8) (COND_639_0_MAIN_LE(TRUE, x0[1], 0)≥NonInfC∧COND_639_0_MAIN_LE(TRUE, x0[1], 0)≥639_0_MAIN_LE(+(x0[1], -1), 0)∧(UIncreasing(639_0_MAIN_LE(+(x0[1], -1), 0)), ≥))
(9) ((UIncreasing(639_0_MAIN_LE(+(x0[1], -1), 0)), ≥)∧[1 + (-1)bso_11] ≥ 0)
(10) ((UIncreasing(639_0_MAIN_LE(+(x0[1], -1), 0)), ≥)∧[1 + (-1)bso_11] ≥ 0)
(11) ((UIncreasing(639_0_MAIN_LE(+(x0[1], -1), 0)), ≥)∧[1 + (-1)bso_11] ≥ 0)
(12) ((UIncreasing(639_0_MAIN_LE(+(x0[1], -1), 0)), ≥)∧0 = 0∧[1 + (-1)bso_11] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(639_0_MAIN_LE(x1, x2)) = [2]x1
POL(0) = 0
POL(COND_639_0_MAIN_LE(x1, x2, x3)) = [-1] + [2]x2
POL(&&(x1, x2)) = [2]
POL(>(x1, x2)) = [-1]
POL(<(x1, x2)) = [2]
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
639_0_MAIN_LE(x0[0], 0) → COND_639_0_MAIN_LE(&&(>(x0[0], 0), <(0, +(x0[0], -1))), x0[0], 0)
COND_639_0_MAIN_LE(TRUE, x0[1], 0) → 639_0_MAIN_LE(+(x0[1], -1), 0)
639_0_MAIN_LE(x0[0], 0) → COND_639_0_MAIN_LE(&&(>(x0[0], 0), <(0, +(x0[0], -1))), x0[0], 0)
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer