(0) Obligation:

JBC Problem based on JBC Program:
Manifest-Version: 1.0 Created-By: 1.6.0_16 (Sun Microsystems Inc.) Main-Class: PastaB16
/**
* Example taken from "A Term Rewriting Approach to the Automated Termination
* Analysis of Imperative Programs" (http://www.cs.unm.edu/~spf/papers/2009-02.pdf)
* and converted to Java.
*/

public class PastaB16 {
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();

while (x > 0) {
while (y > 0) {
y--;
}
x--;
}
}
}


public class Random {
static String[] args;
static int index = 0;

public static int random() {
String string = args[index];
index++;
return string.length();
}
}


(1) JBC2FIG (SOUND transformation)

Constructed FIGraph.

(2) Obligation:

FIGraph based on JBC Program:
PastaB16.main([Ljava/lang/String;)V: Graph of 159 nodes with 1 SCC.


(3) FIGtoITRSProof (SOUND transformation)

Transformed FIGraph SCCs to IDPs. Logs:


Log for SCC 0:

Generated 14 rules for P and 2 rules for R.


Combined rules. Obtained 2 rules for P and 0 rules for R.


Filtered ground terms:


639_0_main_LE(x1, x2, x3, x4) → 639_0_main_LE(x2, x3, x4)
Cond_639_0_main_LE1(x1, x2, x3, x4, x5) → Cond_639_0_main_LE1(x1, x3, x4, x5)
Cond_639_0_main_LE(x1, x2, x3, x4, x5) → Cond_639_0_main_LE(x1, x3)

Filtered duplicate args:


639_0_main_LE(x1, x2, x3) → 639_0_main_LE(x1, x3)
Cond_639_0_main_LE1(x1, x2, x3, x4) → Cond_639_0_main_LE1(x1, x2, x4)

Combined rules. Obtained 2 rules for P and 0 rules for R.


Finished conversion. Obtained 2 rules for P and 0 rules for R. System has predefined symbols.


(4) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): 639_0_MAIN_LE(x0[0], 0) → COND_639_0_MAIN_LE(x0[0] > 0 && 0 < x0[0] + -1, x0[0], 0)
(1): COND_639_0_MAIN_LE(TRUE, x0[1], 0) → 639_0_MAIN_LE(x0[1] + -1, 0)
(2): 639_0_MAIN_LE(x0[2], x1[2]) → COND_639_0_MAIN_LE1(x1[2] > 0, x0[2], x1[2])
(3): COND_639_0_MAIN_LE1(TRUE, x0[3], x1[3]) → 639_0_MAIN_LE(x0[3], x1[3] + -1)

(0) -> (1), if ((x0[0] > 0 && 0 < x0[0] + -1* TRUE)∧(x0[0]* x0[1]))


(1) -> (0), if (x0[1] + -1* x0[0])


(1) -> (2), if ((x0[1] + -1* x0[2])∧(0* x1[2]))


(2) -> (3), if ((x1[2] > 0* TRUE)∧(x0[2]* x0[3])∧(x1[2]* x1[3]))


(3) -> (0), if ((x0[3]* x0[0])∧(x1[3] + -1* 0))


(3) -> (2), if ((x0[3]* x0[2])∧(x1[3] + -1* x1[2]))



The set Q is empty.

(5) IDPNonInfProof (SOUND transformation)

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair 639_0_MAIN_LE(x0, 0) → COND_639_0_MAIN_LE(&&(>(x0, 0), <(0, +(x0, -1))), x0, 0) the following chains were created:
  • We consider the chain 639_0_MAIN_LE(x0[0], 0) → COND_639_0_MAIN_LE(&&(>(x0[0], 0), <(0, +(x0[0], -1))), x0[0], 0), COND_639_0_MAIN_LE(TRUE, x0[1], 0) → 639_0_MAIN_LE(+(x0[1], -1), 0) which results in the following constraint:

    (1)    (&&(>(x0[0], 0), <(0, +(x0[0], -1)))=TRUEx0[0]=x0[1]639_0_MAIN_LE(x0[0], 0)≥NonInfC∧639_0_MAIN_LE(x0[0], 0)≥COND_639_0_MAIN_LE(&&(>(x0[0], 0), <(0, +(x0[0], -1))), x0[0], 0)∧(UIncreasing(COND_639_0_MAIN_LE(&&(>(x0[0], 0), <(0, +(x0[0], -1))), x0[0], 0)), ≥))



    We simplified constraint (1) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (2)    (>(x0[0], 0)=TRUE<(0, +(x0[0], -1))=TRUE639_0_MAIN_LE(x0[0], 0)≥NonInfC∧639_0_MAIN_LE(x0[0], 0)≥COND_639_0_MAIN_LE(&&(>(x0[0], 0), <(0, +(x0[0], -1))), x0[0], 0)∧(UIncreasing(COND_639_0_MAIN_LE(&&(>(x0[0], 0), <(0, +(x0[0], -1))), x0[0], 0)), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (x0[0] + [-1] ≥ 0∧x0[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_639_0_MAIN_LE(&&(>(x0[0], 0), <(0, +(x0[0], -1))), x0[0], 0)), ≥)∧[(-1)Bound*bni_12] ≥ 0∧[(-1)bso_13] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (x0[0] + [-1] ≥ 0∧x0[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_639_0_MAIN_LE(&&(>(x0[0], 0), <(0, +(x0[0], -1))), x0[0], 0)), ≥)∧[(-1)Bound*bni_12] ≥ 0∧[(-1)bso_13] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (x0[0] + [-1] ≥ 0∧x0[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_639_0_MAIN_LE(&&(>(x0[0], 0), <(0, +(x0[0], -1))), x0[0], 0)), ≥)∧[(-1)Bound*bni_12] ≥ 0∧[(-1)bso_13] ≥ 0)



    We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (6)    (x0[0] ≥ 0∧[-1] + x0[0] ≥ 0 ⇒ (UIncreasing(COND_639_0_MAIN_LE(&&(>(x0[0], 0), <(0, +(x0[0], -1))), x0[0], 0)), ≥)∧[(-1)Bound*bni_12] ≥ 0∧[(-1)bso_13] ≥ 0)



    We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (7)    ([1] + x0[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_639_0_MAIN_LE(&&(>(x0[0], 0), <(0, +(x0[0], -1))), x0[0], 0)), ≥)∧[(-1)Bound*bni_12] ≥ 0∧[(-1)bso_13] ≥ 0)







For Pair COND_639_0_MAIN_LE(TRUE, x0, 0) → 639_0_MAIN_LE(+(x0, -1), 0) the following chains were created:
  • We consider the chain COND_639_0_MAIN_LE(TRUE, x0[1], 0) → 639_0_MAIN_LE(+(x0[1], -1), 0) which results in the following constraint:

    (8)    (COND_639_0_MAIN_LE(TRUE, x0[1], 0)≥NonInfC∧COND_639_0_MAIN_LE(TRUE, x0[1], 0)≥639_0_MAIN_LE(+(x0[1], -1), 0)∧(UIncreasing(639_0_MAIN_LE(+(x0[1], -1), 0)), ≥))



    We simplified constraint (8) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (9)    ((UIncreasing(639_0_MAIN_LE(+(x0[1], -1), 0)), ≥)∧[(-1)bso_15] ≥ 0)



    We simplified constraint (9) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (10)    ((UIncreasing(639_0_MAIN_LE(+(x0[1], -1), 0)), ≥)∧[(-1)bso_15] ≥ 0)



    We simplified constraint (10) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (11)    ((UIncreasing(639_0_MAIN_LE(+(x0[1], -1), 0)), ≥)∧[(-1)bso_15] ≥ 0)



    We simplified constraint (11) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (12)    ((UIncreasing(639_0_MAIN_LE(+(x0[1], -1), 0)), ≥)∧0 = 0∧[(-1)bso_15] ≥ 0)







For Pair 639_0_MAIN_LE(x0, x1) → COND_639_0_MAIN_LE1(>(x1, 0), x0, x1) the following chains were created:
  • We consider the chain 639_0_MAIN_LE(x0[2], x1[2]) → COND_639_0_MAIN_LE1(>(x1[2], 0), x0[2], x1[2]), COND_639_0_MAIN_LE1(TRUE, x0[3], x1[3]) → 639_0_MAIN_LE(x0[3], +(x1[3], -1)) which results in the following constraint:

    (13)    (>(x1[2], 0)=TRUEx0[2]=x0[3]x1[2]=x1[3]639_0_MAIN_LE(x0[2], x1[2])≥NonInfC∧639_0_MAIN_LE(x0[2], x1[2])≥COND_639_0_MAIN_LE1(>(x1[2], 0), x0[2], x1[2])∧(UIncreasing(COND_639_0_MAIN_LE1(>(x1[2], 0), x0[2], x1[2])), ≥))



    We simplified constraint (13) using rule (IV) which results in the following new constraint:

    (14)    (>(x1[2], 0)=TRUE639_0_MAIN_LE(x0[2], x1[2])≥NonInfC∧639_0_MAIN_LE(x0[2], x1[2])≥COND_639_0_MAIN_LE1(>(x1[2], 0), x0[2], x1[2])∧(UIncreasing(COND_639_0_MAIN_LE1(>(x1[2], 0), x0[2], x1[2])), ≥))



    We simplified constraint (14) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (15)    (x1[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_639_0_MAIN_LE1(>(x1[2], 0), x0[2], x1[2])), ≥)∧[(-1)Bound*bni_16] + [(2)bni_16]x1[2] ≥ 0∧[1 + (-1)bso_17] ≥ 0)



    We simplified constraint (15) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (16)    (x1[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_639_0_MAIN_LE1(>(x1[2], 0), x0[2], x1[2])), ≥)∧[(-1)Bound*bni_16] + [(2)bni_16]x1[2] ≥ 0∧[1 + (-1)bso_17] ≥ 0)



    We simplified constraint (16) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (17)    (x1[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_639_0_MAIN_LE1(>(x1[2], 0), x0[2], x1[2])), ≥)∧[(-1)Bound*bni_16] + [(2)bni_16]x1[2] ≥ 0∧[1 + (-1)bso_17] ≥ 0)



    We simplified constraint (17) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (18)    (x1[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_639_0_MAIN_LE1(>(x1[2], 0), x0[2], x1[2])), ≥)∧0 = 0∧[(-1)Bound*bni_16] + [(2)bni_16]x1[2] ≥ 0∧0 = 0∧[1 + (-1)bso_17] ≥ 0)



    We simplified constraint (18) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (19)    (x1[2] ≥ 0 ⇒ (UIncreasing(COND_639_0_MAIN_LE1(>(x1[2], 0), x0[2], x1[2])), ≥)∧0 = 0∧[(-1)Bound*bni_16 + (2)bni_16] + [(2)bni_16]x1[2] ≥ 0∧0 = 0∧[1 + (-1)bso_17] ≥ 0)







For Pair COND_639_0_MAIN_LE1(TRUE, x0, x1) → 639_0_MAIN_LE(x0, +(x1, -1)) the following chains were created:
  • We consider the chain COND_639_0_MAIN_LE1(TRUE, x0[3], x1[3]) → 639_0_MAIN_LE(x0[3], +(x1[3], -1)) which results in the following constraint:

    (20)    (COND_639_0_MAIN_LE1(TRUE, x0[3], x1[3])≥NonInfC∧COND_639_0_MAIN_LE1(TRUE, x0[3], x1[3])≥639_0_MAIN_LE(x0[3], +(x1[3], -1))∧(UIncreasing(639_0_MAIN_LE(x0[3], +(x1[3], -1))), ≥))



    We simplified constraint (20) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (21)    ((UIncreasing(639_0_MAIN_LE(x0[3], +(x1[3], -1))), ≥)∧[1 + (-1)bso_19] ≥ 0)



    We simplified constraint (21) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (22)    ((UIncreasing(639_0_MAIN_LE(x0[3], +(x1[3], -1))), ≥)∧[1 + (-1)bso_19] ≥ 0)



    We simplified constraint (22) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (23)    ((UIncreasing(639_0_MAIN_LE(x0[3], +(x1[3], -1))), ≥)∧[1 + (-1)bso_19] ≥ 0)



    We simplified constraint (23) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (24)    ((UIncreasing(639_0_MAIN_LE(x0[3], +(x1[3], -1))), ≥)∧0 = 0∧0 = 0∧[1 + (-1)bso_19] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • 639_0_MAIN_LE(x0, 0) → COND_639_0_MAIN_LE(&&(>(x0, 0), <(0, +(x0, -1))), x0, 0)
    • ([1] + x0[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_639_0_MAIN_LE(&&(>(x0[0], 0), <(0, +(x0[0], -1))), x0[0], 0)), ≥)∧[(-1)Bound*bni_12] ≥ 0∧[(-1)bso_13] ≥ 0)

  • COND_639_0_MAIN_LE(TRUE, x0, 0) → 639_0_MAIN_LE(+(x0, -1), 0)
    • ((UIncreasing(639_0_MAIN_LE(+(x0[1], -1), 0)), ≥)∧0 = 0∧[(-1)bso_15] ≥ 0)

  • 639_0_MAIN_LE(x0, x1) → COND_639_0_MAIN_LE1(>(x1, 0), x0, x1)
    • (x1[2] ≥ 0 ⇒ (UIncreasing(COND_639_0_MAIN_LE1(>(x1[2], 0), x0[2], x1[2])), ≥)∧0 = 0∧[(-1)Bound*bni_16 + (2)bni_16] + [(2)bni_16]x1[2] ≥ 0∧0 = 0∧[1 + (-1)bso_17] ≥ 0)

  • COND_639_0_MAIN_LE1(TRUE, x0, x1) → 639_0_MAIN_LE(x0, +(x1, -1))
    • ((UIncreasing(639_0_MAIN_LE(x0[3], +(x1[3], -1))), ≥)∧0 = 0∧0 = 0∧[1 + (-1)bso_19] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(639_0_MAIN_LE(x1, x2)) = [2]x2   
POL(0) = 0   
POL(COND_639_0_MAIN_LE(x1, x2, x3)) = 0   
POL(&&(x1, x2)) = [-1]   
POL(>(x1, x2)) = [-1]   
POL(<(x1, x2)) = [-1]   
POL(+(x1, x2)) = x1 + x2   
POL(-1) = [-1]   
POL(COND_639_0_MAIN_LE1(x1, x2, x3)) = [-1] + [2]x3   

The following pairs are in P>:

639_0_MAIN_LE(x0[2], x1[2]) → COND_639_0_MAIN_LE1(>(x1[2], 0), x0[2], x1[2])
COND_639_0_MAIN_LE1(TRUE, x0[3], x1[3]) → 639_0_MAIN_LE(x0[3], +(x1[3], -1))

The following pairs are in Pbound:

639_0_MAIN_LE(x0[0], 0) → COND_639_0_MAIN_LE(&&(>(x0[0], 0), <(0, +(x0[0], -1))), x0[0], 0)
639_0_MAIN_LE(x0[2], x1[2]) → COND_639_0_MAIN_LE1(>(x1[2], 0), x0[2], x1[2])

The following pairs are in P:

639_0_MAIN_LE(x0[0], 0) → COND_639_0_MAIN_LE(&&(>(x0[0], 0), <(0, +(x0[0], -1))), x0[0], 0)
COND_639_0_MAIN_LE(TRUE, x0[1], 0) → 639_0_MAIN_LE(+(x0[1], -1), 0)

There are no usable rules.

(6) Complex Obligation (AND)

(7) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): 639_0_MAIN_LE(x0[0], 0) → COND_639_0_MAIN_LE(x0[0] > 0 && 0 < x0[0] + -1, x0[0], 0)
(1): COND_639_0_MAIN_LE(TRUE, x0[1], 0) → 639_0_MAIN_LE(x0[1] + -1, 0)

(1) -> (0), if (x0[1] + -1* x0[0])


(0) -> (1), if ((x0[0] > 0 && 0 < x0[0] + -1* TRUE)∧(x0[0]* x0[1]))



The set Q is empty.

(8) IDPNonInfProof (SOUND transformation)

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair 639_0_MAIN_LE(x0[0], 0) → COND_639_0_MAIN_LE(&&(>(x0[0], 0), <(0, +(x0[0], -1))), x0[0], 0) the following chains were created:
  • We consider the chain 639_0_MAIN_LE(x0[0], 0) → COND_639_0_MAIN_LE(&&(>(x0[0], 0), <(0, +(x0[0], -1))), x0[0], 0), COND_639_0_MAIN_LE(TRUE, x0[1], 0) → 639_0_MAIN_LE(+(x0[1], -1), 0) which results in the following constraint:

    (1)    (&&(>(x0[0], 0), <(0, +(x0[0], -1)))=TRUEx0[0]=x0[1]639_0_MAIN_LE(x0[0], 0)≥NonInfC∧639_0_MAIN_LE(x0[0], 0)≥COND_639_0_MAIN_LE(&&(>(x0[0], 0), <(0, +(x0[0], -1))), x0[0], 0)∧(UIncreasing(COND_639_0_MAIN_LE(&&(>(x0[0], 0), <(0, +(x0[0], -1))), x0[0], 0)), ≥))



    We simplified constraint (1) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (2)    (>(x0[0], 0)=TRUE<(0, +(x0[0], -1))=TRUE639_0_MAIN_LE(x0[0], 0)≥NonInfC∧639_0_MAIN_LE(x0[0], 0)≥COND_639_0_MAIN_LE(&&(>(x0[0], 0), <(0, +(x0[0], -1))), x0[0], 0)∧(UIncreasing(COND_639_0_MAIN_LE(&&(>(x0[0], 0), <(0, +(x0[0], -1))), x0[0], 0)), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (x0[0] + [-1] ≥ 0∧x0[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_639_0_MAIN_LE(&&(>(x0[0], 0), <(0, +(x0[0], -1))), x0[0], 0)), ≥)∧[(-1)Bound*bni_8] + [(2)bni_8]x0[0] ≥ 0∧[1 + (-1)bso_9] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (x0[0] + [-1] ≥ 0∧x0[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_639_0_MAIN_LE(&&(>(x0[0], 0), <(0, +(x0[0], -1))), x0[0], 0)), ≥)∧[(-1)Bound*bni_8] + [(2)bni_8]x0[0] ≥ 0∧[1 + (-1)bso_9] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (x0[0] + [-1] ≥ 0∧x0[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_639_0_MAIN_LE(&&(>(x0[0], 0), <(0, +(x0[0], -1))), x0[0], 0)), ≥)∧[(-1)Bound*bni_8] + [(2)bni_8]x0[0] ≥ 0∧[1 + (-1)bso_9] ≥ 0)



    We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (6)    (x0[0] ≥ 0∧[-1] + x0[0] ≥ 0 ⇒ (UIncreasing(COND_639_0_MAIN_LE(&&(>(x0[0], 0), <(0, +(x0[0], -1))), x0[0], 0)), ≥)∧[(-1)Bound*bni_8 + (2)bni_8] + [(2)bni_8]x0[0] ≥ 0∧[1 + (-1)bso_9] ≥ 0)



    We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (7)    ([1] + x0[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_639_0_MAIN_LE(&&(>(x0[0], 0), <(0, +(x0[0], -1))), x0[0], 0)), ≥)∧[(-1)Bound*bni_8 + (4)bni_8] + [(2)bni_8]x0[0] ≥ 0∧[1 + (-1)bso_9] ≥ 0)







For Pair COND_639_0_MAIN_LE(TRUE, x0[1], 0) → 639_0_MAIN_LE(+(x0[1], -1), 0) the following chains were created:
  • We consider the chain COND_639_0_MAIN_LE(TRUE, x0[1], 0) → 639_0_MAIN_LE(+(x0[1], -1), 0) which results in the following constraint:

    (8)    (COND_639_0_MAIN_LE(TRUE, x0[1], 0)≥NonInfC∧COND_639_0_MAIN_LE(TRUE, x0[1], 0)≥639_0_MAIN_LE(+(x0[1], -1), 0)∧(UIncreasing(639_0_MAIN_LE(+(x0[1], -1), 0)), ≥))



    We simplified constraint (8) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (9)    ((UIncreasing(639_0_MAIN_LE(+(x0[1], -1), 0)), ≥)∧[1 + (-1)bso_11] ≥ 0)



    We simplified constraint (9) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (10)    ((UIncreasing(639_0_MAIN_LE(+(x0[1], -1), 0)), ≥)∧[1 + (-1)bso_11] ≥ 0)



    We simplified constraint (10) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (11)    ((UIncreasing(639_0_MAIN_LE(+(x0[1], -1), 0)), ≥)∧[1 + (-1)bso_11] ≥ 0)



    We simplified constraint (11) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (12)    ((UIncreasing(639_0_MAIN_LE(+(x0[1], -1), 0)), ≥)∧0 = 0∧[1 + (-1)bso_11] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • 639_0_MAIN_LE(x0[0], 0) → COND_639_0_MAIN_LE(&&(>(x0[0], 0), <(0, +(x0[0], -1))), x0[0], 0)
    • ([1] + x0[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_639_0_MAIN_LE(&&(>(x0[0], 0), <(0, +(x0[0], -1))), x0[0], 0)), ≥)∧[(-1)Bound*bni_8 + (4)bni_8] + [(2)bni_8]x0[0] ≥ 0∧[1 + (-1)bso_9] ≥ 0)

  • COND_639_0_MAIN_LE(TRUE, x0[1], 0) → 639_0_MAIN_LE(+(x0[1], -1), 0)
    • ((UIncreasing(639_0_MAIN_LE(+(x0[1], -1), 0)), ≥)∧0 = 0∧[1 + (-1)bso_11] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(639_0_MAIN_LE(x1, x2)) = [2]x1   
POL(0) = 0   
POL(COND_639_0_MAIN_LE(x1, x2, x3)) = [-1] + [2]x2   
POL(&&(x1, x2)) = [2]   
POL(>(x1, x2)) = [-1]   
POL(<(x1, x2)) = [2]   
POL(+(x1, x2)) = x1 + x2   
POL(-1) = [-1]   

The following pairs are in P>:

639_0_MAIN_LE(x0[0], 0) → COND_639_0_MAIN_LE(&&(>(x0[0], 0), <(0, +(x0[0], -1))), x0[0], 0)
COND_639_0_MAIN_LE(TRUE, x0[1], 0) → 639_0_MAIN_LE(+(x0[1], -1), 0)

The following pairs are in Pbound:

639_0_MAIN_LE(x0[0], 0) → COND_639_0_MAIN_LE(&&(>(x0[0], 0), <(0, +(x0[0], -1))), x0[0], 0)

The following pairs are in P:
none

There are no usable rules.

(9) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


R is empty.

The integer pair graph contains the following rules and edges:
(1): COND_639_0_MAIN_LE(TRUE, x0[1], 0) → 639_0_MAIN_LE(x0[1] + -1, 0)


The set Q is empty.

(10) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(11) TRUE

(12) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


R is empty.

The integer pair graph contains the following rules and edges:
(1): COND_639_0_MAIN_LE(TRUE, x0[1], 0) → 639_0_MAIN_LE(x0[1] + -1, 0)
(3): COND_639_0_MAIN_LE1(TRUE, x0[3], x1[3]) → 639_0_MAIN_LE(x0[3], x1[3] + -1)


The set Q is empty.

(13) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.

(14) TRUE